Radiocarbon 14 dating works as far back as

and is now the principal source of information about the absolute age of rocks and other geological features, including the age of fossilized life forms or the age of the Earth itself, and can also be used to date a wide range of natural and man-made materials.

Together with stratigraphic principles, radiometric dating methods are used in geochronology to establish the geologic time scale.

After one half-life has elapsed, one half of the atoms of the nuclide in question will have decayed into a "daughter" nuclide or decay product.

In many cases, the daughter nuclide itself is radioactive, resulting in a decay chain, eventually ending with the formation of a stable (nonradioactive) daughter nuclide; each step in such a chain is characterized by a distinct half-life.

For most radioactive nuclides, the half-life depends solely on nuclear properties and is essentially a constant.

It is not affected by external factors such as temperature, pressure, chemical environment, or presence of a magnetic or electric field.

Different methods of radiometric dating vary in the timescale over which they are accurate and the materials to which they can be applied.

Among the best-known techniques are radiocarbon dating, potassium–argon dating and uranium–lead dating.

By allowing the establishment of geological timescales, it provides a significant source of information about the ages of fossils and the deduced rates of evolutionary change.

The procedures used to isolate and analyze the parent and daughter nuclides must be precise and accurate.

This normally involves isotope-ratio mass spectrometry. The precision of a dating method depends in part on the half-life of the radioactive isotope involved.

Leave a Reply